(lunedì 4 febbraio)
Con l’avvento degli ultimi algoritmi supportati dai motori di ricerca (Hummingbird e RankBrain su tutti) la tendenza del settore è stata quella di fornire all’utente risultati sempre più specifici e attinenti alle query sottoposte (intento di ricerca). E questo sarà uno dei trend del settore nel 2019.
“Knowledge Graph”, questo sconosciuto
Lo scopo del Google Knowledge Graph (in Italiano “grafo”) fu fin dal principio quello di classificare le informazioni disponibili nel web secondo una serie di relazioni. Gran parte dei servizi tecnologici che utilizziamo poggiano su enormi grafi.
Tutto questo lo fa grazie alla ricerca semantica, mettendo in relazione la query effettuata dall’utente col suo intento di ricerca e le informazioni che potrebbero essere più interessanti.
Il primo cambiamento di Google è stato nell’adozione di un motore semantico che pertanto potesse essere in grado di rispondere alle nuove esigenze di ricerca: di qui il motore di ricerca assume un connotato di intelligenza artificiale.
Lo scopo del Google Knowledge Graph (in Italiano “grafo”) è da sempre quello di classificare le informazioni disponibili nel web secondo una serie di relazioni.

Con il supporto del Knowledge Graph Google è stato in grado di semplificare le ricerche affinando la ricerca semantica in senso stretto.

Schematicamente, il Knowledge Graph si presenta come una scheda informativa a destra nella SERP dove poter trovare informazioni su personaggi, luoghi famosi, città, opere d’arte, film, avvenimenti, eccetera (in funzione della query posta)… il tutto senza esplorarne i risultati.
Il pregio di questa soluzione è di ottenere ‘risultati migliori‘ incrociando informazioni provenienti da diverse fonti con altre da siti autorevoli individuati dal motore di ricerca.

Google Duplex
Recentemente, nel maggio del 2018, durante l’annuale conferenza di casa Google per gli sviluppatori, è stata presentata quella che passerà come una novità assoluta per il settore: “Google Duplex”, applicazione di machine learning deputata a fare il lavoro.
Analizzando Google Duplex, si possono cogliere alcune peculiarità fondamentali: per la tonalità della voce, la capacità di interagire e di condurre la conversazione, Google Duplex sembra praticamente umano. Si comporta come un automa, cioè dietro al programma non c’è nessuno che suggerisce le risposte. L’assistente vocale è indipendente e risponde in maniera dinamica alle interrogazioni; non ha preregistrata nessuna serie di risposte da utilizzare bensì per ciò si basa sul “web visibile”. Potendo contare su un elevato numero di pagine web fornite dal motore di ricerca, di volta in volta è in grado di passare contenuti rilevanti in base a quella che è la ricerca.
In breve, Google Duplex è stato “allenato” ad utilizzare il linguaggio umano partendo da un elevato numero di conversazioni.
Il concetto di machine learning (in cui rientra come detto Google Duplex, che è strettamente correlato a quello di intelligenza artificiale, tecnologie valide che che si contraddistinguono per il fatto di riuscire a processare una mole enorme di dati in maniera velocemente.
Google Knowledge Graph, uno step oltre la parola chiave
16 Maggio 2012, Google annuncia per la prima volta ufficialmente il lancio di un enorme Knowledge Graph.

Prima ancora che Google nascesse, la ricerca era legata all’utilizzo di parole chiave: infatti, la parte di ricerca faceva uso di un semplice matching di parole chiave. Ma le parole chiave non sempre bastano.
Nel momento in cui sottopongo un termine cioé non è dato sapere con quale accezione (in che contesto) debba essere inteso ! ed è proprio qui che interviene la potenzialità del ‘knowledge graph’.
Cosa vuol dire “Knowledge Graph”
Knowledge Graph cambia le cose. Il “graph” sviluppato da Google, infatti, rende il motore di ricerca un elemento più vicino agli utenti e consente di ricevere risposte su cose, persone, luoghi, celebrità, squadre sportive, città, edifici, personaggi storici, opere d’arte. Tutto direttamente all’interno del motore di ricerca. Vengono annullate le ambiguità. Ora è in grado di riconoscere la differenza tra le diverse accezioni del termine e può proporre da subito le risposte alle possibili query.
Mentre maturava l’idea del “grafo”, un ulteriore passo in avanti lo si è fatto nel 2005 quando è stato introdotto il nuovo algoritmo RankBrain mediante cui a fronte di una ricerca è possibile ottenere i migliori risultati possibili, ciò utilizzando quella che viene definita “Intelligenza Artificiale”. Mediante questa, grossi volumi di info e dati vengono trasformati in entità matematiche (“vettori“) comprensibili all’elaboratore.