
Con il termine di Artificial Intelligence Marketing (“marketing con uso di intelligenza artificiale”) si fa riferimento al marketing diretto che si basa su tecniche, concetti e modelli elaborati dall’intelligenza artificiale tramite l’apprendimento automatico (la parte di ragionamento che suggerisce le azioni da intraprendere è qui svolta da un computer e da algoritmi anziché dall’uomo).

Del significato dell’Intelligenza Artificiale non si ha ancora una piena cognizione: in sostanza, indica l’abilità di un sistema tecnologico nel risolvere problemi o svolgere compiti e attività tipici della mente e delle abilità umane. In ambito informatico allora potremmo identificare l’AI – Artificial Intelligence – come la disciplina che si occupa di progettare macchine – sia hardware che software – e soluzioni attraverso cui poter risolvere autonomamente problemi, compiere azioni, ecc..
In quest’ottica si sente spesso parlare di Machine Learning e Deep Learning, due distinti modelli di apprendimento e applicazione dell’intelligenza artificiale. ‘Machine Learning‘ si distingue per essere un insieme di tecniche di applicazione mediante cui consentire al software di intelligenza artificiale (modello di apprendimento) di ‘allenare’ le macchine di AI ad apprendere e svolgere autonomamente un compito o un’attività, senza bisogno che siano programmate (senza dover cioè dipendere da sistemi programmati che regolano come deve comportarsi e reagire un sistema di AI); sistemi che servono ad “abituare” l’AI in modo che imparando, correggendo gli errori, allenando sé stessa possa poi essere autonoma nello svolgimento delle azioni impartite.
‘Deep Learning‘: in questo caso parliamo di modelli di apprendimento basati sulla struttura e capacità cognitive del cervello umano. A differenza del precedente metodo allora, il Deep Learning rappresenta la “messa su strada” dell’intelligenza artificiale così concepita andando ad emulare direttamente la mente dell’uomo. Non dunque un modello matematico: il Deep Learning si basa su una rete neurale artificiale che verosimilmente riceve e smista infinite operazioni di calcolo e analisi (simulando in questo modo le connessioni del cervello). Anche se non ce ne accorgiamo, questo modello lo ritroviamo già nel riconoscimento vocale, delle immagini e nei sistemi di NLP – Natural Language Processing.
Secondo l’Osservatorio Artificial intelligence del Politecnico di Milano, è possibile distinguere otto distinte classi di applicazione dell’Intelligenza Artificiale: Autonomous Vehicle: si riferisce a qualunque mezzo a guida autonoma; Autonomous Robot: robot in grado di muoversi ed eseguire azioni senza intervento umano, traendo informazioni dall’ambiente circostante; Intelligent Object: tutti quelli oggetti in grado di eseguire azioni e prendere decisioni autonomamente; Virtual Assistant e Chatbot: sistemi evoluti capaci di comprendere tono e contesto di un dialogo, memorizzare e riutilizzare le informazioni raccolte e sostenere con intraprendenza la conversazione; Recommendation: soluzioni orientate a indirizzare le preferenze, gli interessi, le decisioni dell’utente, basandosi su informazioni fornite; Image Processing: sistemi in grado di effettuare analisi di immagini o video per il riconoscimento di persone, animali e cose presenti nell’immagine stessa; Language Processing: capacità di elaborazione del linguaggio per la comprensione del contenuto, la traduzione, fino alla produzione di testi in modo autonomo; Intelligent Data Processing: soluzioni che utilizzano algoritmi di intelligenza artificiale su dati strutturati ma non per estrarre informazioni, quindi ad es. per sistemi di controllo e analisi complesse.

Step da perseguire dal punto di vista delle abilità intellettuali, il funzionamento di una AI si sostanzia principalmente attraverso su quattro differenti livelli funzionali:
– comprensione: mediante la simulazione di capacità cognitive di correlazione dati ed eventi l’AI (Artificial Intelligence) è in grado di riconoscere testi, immagini, tabelle, video, voce e ricavarne informazioni;
– ragionamento: mediante la logica i sistemi riescono a collegare le molteplici informazioni raccolte (attraverso precisi algoritmi matematici e in modo automatizzato);
– apprendimento: sistemi con funzionalità predefinite per l’analisi degli input di dati e per la loro “corretta” restituzione in output (è il classico esempio dei sistemi che con modelli di apprendimento automatico portano le AI ad imparare e a svolgere varie funzioni);
– interazione (Human Machine Interaction): in questo caso ci si riferisce alle modalità di funzionamento dell’AI in relazione alla sua interazione con l’uomo. È qui che stanno fortemente avanzando i sistemi di Nlp – Natural Language Processing, tecnologie che consentono all’uomo di interagire con le macchine (e viceversa) sfruttando il linguaggio naturale.
L’AI nasce negli anni 50, ma è solo oggi che i progressi tecnologici registrati nel campo della potenza di calcolo, della disponibilità dei dati e nella capacità di analisi per la risoluzione di problemi complessi hanno permesso alle applicazioni di nascere e diffondersi.
Il 2020 sarà l’anno in cui tali soluzioni esploderanno.
Le tecnologie di base sono mature e, mediante quelle più avanzate, vengono rese fruibili a costi accessibili.

Attualmente i principali settori nell’adozione di progetti di intelligenza artificiale sono banche, finanza e assicurazioni, automotive, energia, logistica e telecomunicazioni.
Come allora l’intelligenza artificiale può tornare utile per le imprese e il commercio ? Un esempio lampante e sotto gli occhi di tutti sono gli assistenti vocali (Siri di Apple, Cortana di Microsoft o Alexa di Google), ma verosimilmente possiamo contarne infinite applicazioni di cui magari neppure ci accorgiamo: ad esempio gli algoritmi intelligenti, in grado cioè di auto-apprendere; quelli che ci suggeriscono i prodotti da acquistare, i generi di film o brani musicali che rispondono ai nostri gusti, rispondono a domande dei clienti via chat; sono in grado di riconoscere il volto di una persona per consentire un accesso, di smistare i documenti in base al contenuto,filtrare i curriculum per selezionare il candidato ideale; forniscono un valido supporto nel settore medico, aiutando i medici nella lettura delle immagini radiografiche e nelle diagnosi.Esistono già svariati esempi di come l’introduzione dell’Intelligenza artificiale nei processi aziendali abbia avuto un impatto positivo, automatizzando parti altrimenti ripetitive, in precedenza svolti dall’uomo.
Di seguito un estratto da una recente indagine condotta in particolare sul mercato italiano.

In Italia, secondo i risultati dell’Osservatorio Intelligenza Artificiale del Politecnico di Milano, si fa strada l’Artificial Intelligence e, grazie ad essa il mercato, tra software, hardware e servizi, ha raggiunto, nel 2019, il valore di 200 milioni di euro.
Tra i diversi settori, l’AI si è diffusa in particolare nelle banche e finanza (25% del mercato), nella manifattura (13%), nelle utility (13%) e nelle assicurazioni (12%).

La quota principale della spesa (il 33%) è dedicata a progetti di Intelligent Data Processing, algoritmi per analizzare ed estrarre informazioni dai dati, seguiti da quelli di Natural Language Processing e di Chatbot/Virtual Assistant (28%) in grado di comprendere il linguaggio naturale ed eventualmente fornire risposte ad un interlocutore.
Le imprese italiane si dimostrano consapevoli della portata di questa tecnologia: il 90% ha compreso che l’AI può replicare specifiche capacità dell’intelligenza umana, mentre è superata l’idea secondo cui il nostro intelletto possa essere replicato completamente.
Il 96% delle imprese che hanno già implementato soluzioni di AI non rileva effetti di sostituzione del lavoro umano da parte delle macchine. Più che sostituire le capacità degli esseri umani, l’AI le sta aumentando: il 48% delle imprese evidenzia che le soluzioni di intelligenza artificiale adottate non hanno direttamente coinvolto attività svolte dalle persone, il 28% che le attività sostituite hanno permesso ai lavoratori di dedicarsi con maggiore dedizione a quelle rimanenti, il 24% che sono stati necessari ricollocamenti, anche parziali, dei lavoratori coinvolti.
Le soluzioni di automazione di processo RPA (Robotic Process Automation) sono da diversi anni utilizzate per snellire processi onerosi, automatizzando operazioni ripetitive, in particolare sui sistemi informativi (ad esempio, per estrarre dati da un sistema ERP e inserirli in un altro software). Il loro utilizzo è mirato all’efficienza: fanno risparmiare molto tempo e permettono di dedicare le risorse ad attività di maggior rilievo.
L’integrazione dell’AI con la RPA, di fatto complementari, ha reso possibile automatizzare le parti più complesse del processo precedentemente demandate all’uomo.
Nel Marketing si vedono ormai da tempo sistemi di AI impiegati in differenti attività e con svariati obiettivi; il più importante riguarda indubbiamente la gestione della relazione con gli utenti, da sempre “cartina tornasole” dell’azienda, come pure del mondo BtoB.
Le tecnologie di IA impiegate vanno dagli assistenti vocali/virtuali che sfruttano algoritmi di intelligenza artificiale sia per il riconoscimento del linguaggio naturale sia per l’apprendimento e l’analisi delle abitudini e dei comportamenti degli utenti, fino ai processi per l’acquisizione e analisi di grandi moli di dati per la comprensione del “sentiment” e delle esigenze delle persone con attività che si spingono fino alla previsione dei comportamenti di acquisto da cui derivare strategie di comunicazione e/o proposta di servizi.
Chatbot ed altri sistemi basati sul NLP sono ormai diffusamente impiegati anche all’interno dei reparti che si occupano di assistenza, servizio e supporto alla clientela (contact center, customer service, manutenzione e supporto, ecc.).
La rivoluzione digitale sta interessando sempre più le aziende in modo organico impattando sui modelli operativi e organizzativi in maniera esponenziale e alquanto inesplicabile quanto ad “ambiti di applicazione”.
La chiamano “disruption”:oramai sta divenendo un canone irrinunciabile per la sopravvivenza delle aziende.
Fondamentale per organizzare le decisioni d’impresa è tener presente che “Data is the new oil”: l’adozione dell’intelligenza artificiale permetterà di capire e prevedere con lungimiranza il contesto operativo dell’azienda.
Qual è il processo di funzionamento delle nuove tecnologie AI applicate al Marketing? Questi gli step:
Ascolto: la macchina è capace di percepire quello che le sta intorno attraverso l’acquisizione di input;
Comprensione: è capace di analizzare e capire i dati che acquisisce;
Apprendimento: è in grado di svolgere una funzione, un computo;
Interazione: è in grado di prendere una decisione e interagire con l’essere umano.
Applicare queste tecnologie porterà ad automatizzare diverse attività e conseguentemente, sgravati da processi ripetitivi e a basso valore aggiunto, l’uomo potrà concentrarsi sulle sue doti creative. Da ciò deriva la massima “Work smarter, non harder!”
Sono diversi i settori del Marketing su cui l’AI sta impattando, vediamone alcuni insieme:
Chatbot che si basano su Natural Language Processing (NLP): alcuni studi hanno dimostrato che hanno tassi di apertura e percentuali di click superiori rispetto alle e-mail. Messenger applicato in questo contesto ha un Avg open rate (tasso di apertura medio) del 90% con un CTR (numero dei click generati dalla visualizzazione di un annuncio) del 30%, mentre le mail si fermano al 23% e al 3,3%.
Rappresentano inoltre un ottimo mezzo per ottenere informazioni sui visitatori del sito web, sono utilizzati per:
- segmentare il pubblico e vendere prodotti e servizi;
- rendere i contenuti più interattivi e personalizzati;
- sviluppare un rapporto più personale con gli utenti, aumentandone la fedeltà e la fiducia.
Content Marketing: l’AI può venire in supporto alla creazione di contenuti in ambiti quali la ricerca di keyword, la pianificazione degli argomenti, l’ottimizzazione e la personalizzazione dei contenuti, etc…
SEO optimization: l’AI può aiutare a identificare le keyword, a raggrupparle per individuare gli argomenti principali di interesse, sviluppare la struttura del sito in sottogruppi pertinenti e creare contenuti ottimizzati.
Search Marketing: sta cambiando il modo di cercare online, basta pensare che la ricerca vocale è un’applicazione AI. Entro il 2020 il 50% delle ricerche saranno vocali e gli algoritmi di Machine Learning, per poter essere sempre più puntuali, hanno bisogno di essere istruiti in maniera elementare: si parte dall’analisi stessa delle parole usate, che indicano l’intento dell’utente (es. cosa/chi, come, quando e dove).
Autonomos Media buying: l’acquisto di spazi pubblicitari può avvalersi dell’AI per trovare il posto giusto al momento giusto in cui veicolare l’informazione.
Marketing Attribution: soluzioni AI possono aiutare le aziende a raccogliere dati sul gradimento del mercato del brand come il posizionamento nei confronti dei competitors.
Un limite all’usabilità e dunque applicazione di sistemi di intelligenza artificiale sta nella paura che l’AI possa diventare “cattiva”: in realtà la tecnologia non ha sentimenti, sta a noi darle un indirizzo con i nostri intenti.
Con l’avvento dell’Intelligenza Artificiale e del Machine Learning si sta assistendo a a un importante cambiando del panorama tecnologico: ad esempio se prima ipotizzare macchine in grado di guidare da sole era fantascienza, oggi ciò è realtà; e molti altri ancora sono gli ambiti di applicazione di queste tecnologie.
Nel contesto aziendale il settore che si occupa di Marketing e Pubblicità tutto questo si identifica nel concetto di Artificial Intelligence Marketing, l’insieme delle tecnologie che fanno capo all’AI (Machine Learning, Natural Language Processing e Deep Learning) e alle tecniche utilizzate nel Marketing Comportamentale con la finalità di individuare il proprio target e quali le sue caratteristiche.
Come impatta allora l’AI sul Marketing ? Detto della specializzazione delle macchine che consente all’uomo di dedicarsi ad altro processi produttivi, l’AI permette “di liberare a” nuove esperienze possibili che sono la chiave per dare vita ad un Marketing che sia sempre più personalizzato e focalizzato nel soddisfare le esigenze del consumatore.
Questa tecnologia permette inoltre di dare impulso alle cosiddette personalizzazioni su larga scala, desiderate da un numero crescente di consumatori, andando in questo modo a catalizzare un pubblico ancora maggiore, intercettando i bisogni attuali del consumatore.
Una applicazione di intelligenza artificiale che va diffondendosi progressivamente sulle piattaforme di acquisto di beni/servizi è quella che va sotto il nome di “cashback” (‘soldi indietro’): nel settore del marketing indica un sistema di riaccredito di soldi sugli acquisti effettuati presso negozi convenzionati, che viene restituito in un portafoglio virtuale, ossia un processo nel quale una parte di quello che noi abbiamo pagato per un acquisto ci viene restituita.
(Rif: https://www.ai4business.it/intelligenza-artificiale/ https://www.digital4.biz/executive/ai-cos-e-l-intelligenza-artificiale-e-come-puo-aiutare-le-imprese/ https://www.contentintelligence.net/it/ci/marketing-e-intelligenza-artificiale-come-innovare-il-business https://www.vidiemme.it/artificial-intelligence-marketing/ https://italiacashback.com/cashback-come-funziona/ https://ai.marketing/it)